Distinct roles for MAX protein isoforms in proliferation and apoptosis.
نویسندگان
چکیده
MAX is a basic helix-loop-helix-leucine zipper protein that plays a central role in the transcriptional control of Myc oncoproteins. MYC-MAX heterodimers stimulate transcription, whereas MAX homodimers, or heterodimers between MAX and members of the MAD family of basic helix-loop-helix-leucine zipper proteins, repress transcription. Max exists in two major isomeric forms, MAX(L) and MAX(S), which differ from one another only by a 9-amino acid insertion/deletion. We show here that MAX(L) is much more effective at homodimeric DNA binding than MAX(S). In NIH3T3 cells, MAX(L) was able to repress a c-Myc-responsive reporter gene whereas MAX(S) either stimulated the reporter gene or had little effect on its expression. In comparison to control cell lines or those stably over-expressing MAX(S), MAX(L)-over-expressing cell lines showed reduced expression of transiently expressed or endogenous c-Myc responsive genes, grew more slowly, possessed a higher growth factor requirement, and showed accelerated apoptosis following growth factor deprivation. Differential effects on growth and apoptosis represent two previously unrecognized properties of MAX proteins. These can at least partly be explained by the differences in their DNA binding abilities and their effects on target gene expression.
منابع مشابه
Downregulation of Kinesin Spindle Protein Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity in Hepatocellular Carcinoma Cells
Background: Kinesin spindle protein (KSP) plays a critical role in mitosis. Inhibition of KSP function leads to cell cycle arrest at mitosis and ultimately to cell death. The aim of this study was to suppress KSP expression by specific small-interfering RNA (siRNA) in Hep3B cells and evaluate its anti-tumor activity. Methods: Three siRNA targeting KSP (KSP-siRNA #1-3) and one mismatched-siRNA (...
متن کاملNuclear protein kinase C isoforms: key players in multiple cell functions?
Protein kinase C (PKC) isozymes are a family of serine/threonine protein kinases categorized into three subfamilies: classical, novel, and atypical. PKC isozymes, whose expression is cell type-specific and developmentally regulated, are key transducers in many agonist-induced signaling cascades. To date at least 10 different PKC isotypes have been identified and are believed to play distinct re...
متن کاملDistinct roles and differential expression levels of Wnt5a mRNA isoforms in colorectal cancer cells
The canonical Wnt/β-catenin pathway is constitutively activated in more than 90% of colorectal cancer (CRC) cases in which β-catenin contributes to CRC cell growth and survival. In contrast to the Wnt/β-catenin pathway, the non-canonical Wnt pathway can antagonize functions of the canonical Wnt/β-catenin pathway. Wnt5a is a key factor in the non-canonical Wnt pathway, and it plays diverse roles...
متن کاملClass II Phosphoinositide 3-Kinases Contribute to Endothelial Cells Morphogenesis
The question of whether the distinct isoforms of the family of enzymes phosphoinositide 3-kinases (PI3Ks) play redundant roles within a cell or whether they control distinct cellular processes or distinct steps within the same cellular process has gained considerable importance in the recent years due to the development of inhibitors able to selectively target individual isoforms. It is importa...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 272 28 شماره
صفحات -
تاریخ انتشار 1997